Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Hydrogen bonding in calcium-tri-fluoromethanesulfonate-1,3-di-4-pyridylurea-methanol (1/2/2/4)

M. Barboiu and A. van der Lee*

Institut Européen des Membranes, UMII-cc047, Place E. Bataillon, 34095 Montpellier, France
Correspondence e-mail: avderlee@univ-montp2.fr

Received 14 April 2003
Accepted 22 May 2003
Online 16 August 2003
The structure of the supramolecular complex calcium-tri-fluoromethanesulfonate-1,3-di-4-pyridylurea-methanol (1/2/ 2/4), $\mathrm{Ca}^{2+} \cdot 2 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-} \cdot 2 \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O} \cdot 4 \mathrm{CH}_{4} \mathrm{O}$, is presented. The Ca^{2+} ion lies on an inversion centre and is octahedrally coordinated by four methanol molecules and two trifluoromethanesulfonate counter-ions. The molecular packing is dominated by hydrogen-bonded sheets in the (110) plane which contain R_{4}^{4} (32) rings; in these rings, significant $\pi-\pi$ interactions are observed between inversion-related 1,3-di-4pyridylurea molecules.

Comment

Functional supramolecular architectures as constitutionally dynamic adaptative materials have emerged as a major field in supramolecular chemistry geared towards the design of selforganizing nanosystems of increasing complexity (Lehn, 2000a,b, 2002; Funeriu et al., 2001). The self-assembly of different entities is based both on the implementation of ligands containing specific molecular information stored in the arrangement of suitable binding sites and on complexed ions reading out the structural information through the algorithm defined by their recognition geometry. Of special interest are so-called hereon-heteroditopic ligand systems containing different binding units that can combine to form different superstructures according to the specific interaction involved (Funeriu et al., 2001).

(I)

We consider in this context the 1,3-di-4-pyridylurea ligand, L, in which the available urea and pyridine moities are covalently linked. We reasoned that, by an appropriate choice of these binding units and of a specific metal salt, we could obtain, under specific conditions, a supramolecular structure
(output device). The different interaction types (subprograms) involved are: (a) pyridine-metal coordination (Scudder et al., 1999; Lu et al., 2001), (b) metal-anion association (coordination), (c) urea-anion complexation (Scheerder et al., 1996) and (d) urea head-to-tail association (Etter, 1990). These interactions combine either in an independent way (linear combination) or by a crossover with interference between the individual subprograms.

The structure of the complex, (I), of L with $\mathrm{CaTf}_{2^{-}}$ (methanol) $)_{4}\left(\mathrm{Tf}^{-}=\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right.$, triflate) was determined from a crystal obtained from a methanol/diisopropyl ether (1:1) solution at room temperature. This complex proves to be an intriguing coordination polymer with a novel architecture and results from the crossover of the simultaneous independent trifluoromethanesulfonate-urea and trifluoromethanesulfonate $-\mathrm{Ca}^{2+}$ complexation subprograms.

The molecular structure of (I) is presented in Fig. 1. The unit cell contains two L ligands, one Ca^{2+} ion on an inversion

Figure 1
The structure of (I), showing displacement ellipsoids at the 30% probability level. [Symmetry code: (a) $2-x,-y,-z$.]

Figure 2

A view of part of the (110) sheet structure. For clarity, F atoms of the CF_{3} moieties and H atoms not involved in hydrogen bonding are not shown. [Symmetry codes: (*) $1-x, 1-y, 1-z$; (\$) $x, y,-1+z ;$ (\#) $1-x, 1-y,-z ;$ (\&) $x, y, 1+z$.]

Figure 3
A detailed view of the $R_{4}^{4}(32)$ ring. For clarity, H atoms not involved in hydrogen bonding and the CF_{3} moieties are not shown. The symmetry codes are as in Fig. 2.

Figure 4

A view normal to the best plane through the L ligand, showing ring overlap. The symmetry code is as in Fig. 2.
centre, two trifluoromethanesulfonate (Tf^{-}) counter-ions and four methanol molecules. The unique L ligand has an almost planar conformation; the angle between the two pyridyl rings is $4.28(10)^{\circ}$. Two inversion-related Tf^{-}ions are coordinated to the Ca^{2+} ion and the octahedral coordination at Ca^{2+} is completed by two pairs of inversion-related methanol molecules; pertinent dimensions are given in Table 1. The inver-sion-related L ligands are linked to the Tf^{-}ion by pairs of $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, as shown in Fig. 1; hydrogen-bond geometry details are given in Table 2. Possibly assisting the retention of this structure are $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (Table 2) between $\mathrm{C} 3-\mathrm{H} 3 A$ and O 12 at $(2-x,-y,-z)$.

The crystal structure contains sheets of molecules lying in the (110) plane (Fig. 2). A feature of this sheet structure is the R_{4}^{4} (32) (Bernstein et al., 1995) hydrogen-bonded ring system, which is shown in more detail in Fig. 3. Infinite chains are thus generated which are further linked to yield the sheet structure by $\mathrm{Tf}^{-}-\mathrm{Ca}^{2+}-\mathrm{Tf}^{-}$moieties. The $R_{4}^{4}(32)$ ring is stabilized by significant $\pi-\pi$ interactions between inversion-related L ligands; details of the overlap are shown in Fig. 4, where the shortest intermolecular C. . C distance is 3.388 (2) \AA between C 14 and C 26 at $(1-x, 1-y, 1-z)$.

Experimental

A solution of $L(20 \mathrm{mg}, 0.09 \mathrm{mmol})$ in methanol $(1 \mathrm{ml})$ was added to a solution of $\mathrm{CaTf}_{2}(17.6 \mathrm{mg}, 0.09 \mathrm{mmol})$ in methanol $(1 \mathrm{ml})$ and the mixture was heated for 2 h at 333 K . Single crystals of the $L \mathrm{CaTf}_{2}$ complex were obtained by slow diffusion of diisopropyl ether as nonsolvent into the resulting methanol solution at room temperature.

Crystal data

$\mathrm{Ca}^{2+} \cdot 2 \mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}^{-} \cdot 2 \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O} \cdot-$
$4 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=894.84$
Triclinic, $P \overline{1}$
$a=9.157(1) \AA$
$b=9.768(1) \AA$
$c=11.366(2) \AA$
$\alpha=98.95(1)^{\circ}$
$\beta=97.14(1)^{\circ}$
$\gamma=94.03(1)^{\circ}$
$V=992.3(2) \AA^{\circ}$

Data collection

Xcalibur CCD diffractometer
Area-detector scans
Absorption correction: Gaussian
(Schwarzenbach \& Flack, 1991)
$T_{\text {min }}=0.900, T_{\text {max }}=0.910$
17908 measured reflections
5013 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.035$
$w R\left(F^{2}\right)=0.066$
$S=0.70$
6255 reflections
264 parameters
H -atom parameters constrained
$Z=1$
$D_{x}=1.497 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4175 reflections
$\theta=1.8-23.2^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Prism, colourless
$0.30 \times 0.30 \times 0.25 \mathrm{~mm}$

2931 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=28.5^{\circ}$
$h=-13 \rightarrow 12$
$k=-12 \rightarrow 13$
$l=-17 \rightarrow 16$

Table 1
Selected interatomic distances (\AA).

$\mathrm{Ca} 1-\mathrm{O} 2$	$2.3384(11)$	N1-C1	$1.3834(18)$
$\mathrm{Ca} 1-\mathrm{O} 3$	$2.3215(11)$	N1-C14	$1.3913(19)$
$\mathrm{Ca} 1-\mathrm{O} 11$	$2.3521(11)$	N2-C1	$1.3731(19)$
O1-C1	$1.2160(18)$	N2-C24	$1.3996(18)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 12$	0.86	2.01	2.8608 (18)	170
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 13$	0.86	2.27	3.1025 (17)	163
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 12^{\text {i }}$	0.96	2.52	3.316 (2)	140
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 11^{\text {ii }}$	0.82	1.87	2.6891 (18)	179
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 21{ }^{\text {iii }}$	0.82	1.92	2.7250 (16)	167

Symmetry codes: (i) $2-x,-y,-z$; (ii) $x, y, z-1$; (iii) $1-x, 1-y,-z$.

For simplicity, the atoms were positioned in the cell so that the $\pi-\pi$ interaction was between molecules of the ligand L related by the inversion centre at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. All H atoms were located in difference maps and subsequently allowed for as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$.

Data collection: Crysalis CCD (Oxford Diffraction, 2002); cell refinement: Crysalis RED (Oxford Diffraction, 2002); data reduction: Crysalis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001), SHELXL97 (Sheldrick, 1997) and WinGX (Version 1.64.05; Farrugia, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1212). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Funeriu, D. P., Rissanen, K. \& Lehn, J.-M. (2001). Proc. Natl Acad. Sci. 98, 10546-10551.
Lehn, J.-M. (2000a). Chem. Eur. J. 6, 2097-2102.
Lehn, J.-M. (2000b). Supramolecular Polymers, edited by A. Ciferi, p. 615. New York: Dekker.
Lehn, J.-M. (2002). Proc. Natl Acad. Sci. 99, 4763-4768.
Lu, J. Y., Norman, C., Abboud, K. A. \& Ison, A. (2001). Inorg. Chem. Commun. 4, 459-461.
Oxford Diffraction (2002). Crysalis $C C D$ and RED. Versions 1.69. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Scheerder, J., Duynhoven, J. P. M., Engbersen, J. F. J. \& Reinhoudt, D. N. (1996). Angew. Chem. Int. Ed. Engl. 35, 1090-1093.

Schwarzenbach, D. \& Flack, H. D. (1991). Acta Cryst. A47, 134-137.
Scudder, M. L., Goodwin, H. A. \& Dance, I. G. (1999). New J. Chem. 23, $695-$ 705.

Sheldrick, G. M. (1979). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. \& Cooper, R. I. (2001) CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.

